Directional Sensitivity and Mechanical Coupling Dynamics of Camp Aniform Sensilla during Chord- Wise Deformations of the Fly Wing

نویسنده

  • MICHAEL H. DICKINSON
چکیده

The complex morphology of an insect campaniform sensillum is responsible for transforming strains of the integument into a displacement of the campaniform dome and subsequently a deformation of the dendritic membrane. In this paper, the first step in this coupling process was investigated in identified campaniform sensilla on the wing of the blowfly by stimulating the sensilla with chord-wise deflections of the wing blade. Campaniform sensilla neurones were sensitive to both dorsal and ventral deflections of the wing, and thus exhibited no strong directional sensitivity to the chord-wise components of wing deformation. These results are consistent with a simplified mechanical model in which the wing veins act as cylinders that undergo bending and torsion during chord-wise wing deformation. By comparing the responses of campaniform neurones to chord-wise deflections of the wing with those evoked by direct punctate stimulation of the dome, it is possible to estimate the dynamic properties of the coupling process that links wing deformation to dome deformation. In the identified campaniform neurone examined, wing-dome coupling attenuates high frequencies and transforms the chord-wise deflections of the wing into dome deformation similar in degree of excitation to that caused by direct punctate indentions that are two or more orders of magnitude smaller in size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of Wing Proprioceptive and Descending Exteroceptive Sensory Inputs by Thoracic Interneurones of the Locust

1. The campaniform sensilla on the wings of the locust are strain-sensitive mechanoreceptors that provide proprioceptive feedback about wing forces, particularly aerodynamic lift, experienced during flight. They can be excited by imposed deformations of the wing, including those caused by imposed wing twisting. The afferents of the single subcostal group of sensilla on the hindwing had the same...

متن کامل

3D reconstruction and analysis of wing deformation in free-flying dragonflies.

Insect wings demonstrate elaborate three-dimensional deformations and kinematics. These deformations are key to understanding many aspects of insect flight including aerodynamics, structural dynamics and control. In this paper, we propose a template-based subdivision surface reconstruction method that is capable of reconstructing the wing deformations and kinematics of free-flying insects based...

متن کامل

LINEAR AND NONLINEAR ENCODING PROPERTffiS OF AN IDENTIFIED MECHANORECEPTOR ON THE FLY WING MEASURED WITH MECHANICAL NOISE STIMULI

The wing blades of most flies contain a small set of distal campaniform sensilla, mechanoreceptors that respond to deformations of the cuticle. This paper describes a method of analysis based upon mechanical noise stimuli which is used to quantify the encoding properties of one of these sensilla (the d-HCV cell) on the wing of the blowfly Calliphora vomitoria (L.). The neurone is modelled as tw...

متن کامل

Fatigue Life Assessment of Composite Airplane Wing Subjected to Variable Mechanical and Thermal Loads

The purpose of this paper is to estimate the fatigue life of an airplane wing with laminated composite skin, subjected to variable mechanical and thermal loads. To achieve this aim,at first, the three-dimensional model of airplane wing was drawn in CATIA software. Then, by transferring the model to the ABAQUS software, the finite element model of the wing wascreated. H...

متن کامل

Allometry of wing twist and camber in a flower chafer during free flight: How do wing deformations scale with body size?

Intraspecific variation in adult body mass can be particularly high in some insect species, mandating adjustment of the wing's structural properties to support the weight of the larger body mass in air. Insect wings elastically deform during flapping, dynamically changing the twist and camber of the relatively thin and flat aerofoil. We examined how wing deformations during free flight scale wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005